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via Deep Sequencing
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Abstract

RNA-binding proteins (RBPs) function in all aspects of RNA processes including stability, structure,
export, localization and translation, and control gene expression at the posttranscriptional level. To
investigate the roles of RBPs and their direct RNA ligands in vivo, recent global approaches combining
RNA immunoprecipitation and deep sequencing (RIP-seq) as well as UV-cross-linking (CLIP-seq) have
become instrumental in dissecting RNA–protein interactions. However, the computational analysis of these
high-throughput sequencing data is still challenging. Here, we provide a computational pipeline to analyze
CLIP-seq and RIP-seq datasets. This generic analytic procedure may help accelerate the identification of
direct RNA–protein interactions from high-throughput RBP profiling experiments in a variety of bacterial
species.
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1 Introduction

RNA-binding proteins (RBPs) are an important class of post-
transcriptional regulators of gene expression. RBPs either directly
bind to messenger RNAs (mRNAs) or act through numerous
regulatory noncoding RNAs (ncRNAs), dictating the fate of the
bound transcripts. In all three kingdoms of life, increasing numbers
of RBPs have been identified, including many well-studied model
organisms such as pathogenic bacteria [1], baker’s yeast [2], and
human [3]. Taking bacteria for example, a new global RBP called
ProQ was recently found as a major RNA chaperone in two dis-
tantly related bacterial pathogens Salmonella enterica serovar
Typhimurium [1] and Legionella pneumophila [4], constituting
the third global RBP in bacteria besides the well-known Hfq and
CsrA proteins [5, 6].

Functional understanding of RBPs requires the full account of
their RNA binding partners and the exact binding sites. To identify
RNAs that are bound by an RBP of interest, a classic approach is to
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immunoprecipitate the RBP using a specific antibody followed
by analysis of the copurified transcripts using RNA gels or DNA
arrays (RIP-chip). Thanks to the advance of high-throughput
sequencing technologies, unbiased deep sequencing of the
co-immunoprecipitated RNAs (RIP-seq) can now identify
hundreds or even thousands of transcripts in a bacterium [7, 8]. -
RIP-seq is relatively simple and experimentally straightforward,
which have sparked its wide-application in the study of RNA–pro-
tein interactions in various biological systems [9] (Table 1). While
RIP-seq usually identifies the full-length transcripts bound to an
RBP, RIP-seq combined with UV cross-linking (CLIP-seq) can
further identify the exact protein binding sites in a transcript. This
approach was also referred to as HITS-CLIP, for high-throughput
sequencing of RNA isolated by cross-linking immunoprecipitation
[19]. The key of CLIP-seq is the in vivo cross-linking under ultra-
violet (UV) light that introduces a covalent bond between RBP and
the bound RNA. This covalent linkage enables the cross-linked
RNA–protein complexes to survive stringent purification steps
(often under denaturing conditions) and partial nuclease digestion
to remove the unbound sequences. Deep sequencing of UV-cross-
linked RNA fragments (CLIP-seq) informatively provides the loca-
tions of the protein-binding sites in a large number of transcripts
[20]. The unique UV-cross-linking step makes CLIP-seq a power-
ful method to identify direct RNA–protein interactions. CLIP-seq
has superior sensitivity in capturing weak or transient interactions

Table 1
Recent RNAseq-based studies of RNA–protein interactions in bacteria

Technique Organism RNA-binding protein Year PMID

RIP-seq Salmonella enterica serovar Typhimurium Hfq 2008 [7]

RIP-seq Salmonella enterica serovar Typhimurium Hfq 2012 [8]

RIP-seq Bacillus subtilis Hfq 2013 [10]

RIP-seq Sinorhizobium meliloti Hfq 2014 [11]

CLIP-seq Escherichia coli Hfq 2014 [12]

RIP-seq Escherichia coli Hfq 2014 [13]

RIP-seq Brucella suis Hfq 2015 [14]

RIP-seq Campylobacter jejuni CsrA 2016 [15]

CLIP-seq Salmonella enterica serovar Typhimurium Hfq, CsrA 2016 [16]

RIP-seq Salmonella enterica serovar Typhimurium ProQ 2016 [1]

RIP-seq Legionella pneumophila CsrA 2017 [17]

CLIP-seq Salmonella enterica serovar Typhimurium RNase E 2017 [18]
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in vivo [21]. In addition, the cross-linked peptide on RNA often
results in mutations in cDNAs during reverse transcription. These
mutations help pinpoint the exact protein-binding sites at the
single nucleotide resolution [22].

This chapter mainly focuses on the CLIP-seq data analysis in
bacteria, owing to its higher data complexity and its recent success-
ful applications in Escherichia coli [12] and S. Typhimurium [16]
(Table 1). In these studies, CLIP-seq has demonstrated its power in
identifying the direct RNA ligands and exact sequences bound by
Hfq and CsrA, respectively. While CLIP-seq is becoming instru-
mental in studying bacterial RNA–protein interactions, the analysis
of CLIP-seq data is highly demanding. A suite of bioinformatics
tools and analytic procedures are required to fully reveal the infor-
mation capsulated in the sequencing data, and to identify the true
RNA–protein interactions. To help other bioinformaticians and
RNA enthusiasts perform such sequencing data analysis, here we
have outlined a computational pipeline (Fig. 1) that has been
recently devised to analyze CLIP-seq data for Hfq and CsrA
[23]. Because these analytical procedures are generic, the presented
pipeline can be readily used for the analysis of CLIP-seq with any
given RBP, as well as the analysis of RIP-seq data.

2 Materials

We use our recently published CLIP-seq dataset [24] as an exam-
ple, which is hosted in NCBI GEO database (GSE74425). The S.
Typhimurium SL1344 reference genome and annotation informa-
tion can be downloaded from NCBI FTP site (ftp://ftp.ncbi.nlm.
nih.gov/genomes/archive/old_refseq/Bacteria/Salmonella_
enterica_serovar_Typhimurium_SL1344_uid86645/).

3 Methods

3.1 Quality Trimming Upon completing the Illumina sequencing, the received raw
sequencing reads require initial processing. A sequencing read
must contain parts of the adapter sequences, which need be identi-
fied and trimmed before aligning to the reference genomes. Among
many suitable tools, Cutadapt is a user-friendly command line
interface. It can search and trim adapter sequences in an error-
tolerant manner, and it is compatible with a large variety of input
file formats generated by high-throughput sequencers [23] (see
Note 1). The latest version can be downloaded from http://
cutadapt.readthedocs.io/en/stable/index.html.

To perform adaptor trimming for paired-end reads, a typical
command line employing Cutadapt looks like this:
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cutadapt -q 20 -a “AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC” -A

“GATCGTCGGACTGTAGAACTCTGAACGTGTAGATCTCGGTGGTCGCCGTATCATT”

--pair-filter=both -o [file1].out.fq -p [file2].out.fq

[file1].fq [file2].fq

Quality Trimming

Cutadapt

Fastuniq

Raw sequencing reads

Reads Mapping

READemption

Peak Calling

PEAKachu

Crosslinking Mutations

PIPE-CLIP

Motif Discovery

MEME

Meta-gene Analysis

Metaseq

deeptools

Functional Enrichment

FUNdue

Segemehl

Fig. 1 Workflow for bacterial RBP profiling data analysis. Raw sequencing reads
from CLIP-seq or RIP-seq are subjected to the analysis pipeline. Quality and
user-defined sequence trimming removes adapter sequences, low-quality reads,
and PCR duplicates using Cutadapt and Fastuniq tools. Reads are then mapped
to the reference genome using READemption and segemehl. RBP-binding sites
in RNA are identified using peak-calling algorithm PEAKachu, as well as the
mutation analysis package PIPE-seq. The putative motifs sequences and
structural properties are identified using MEME and CMfinder. Further, meta-
gene analysis is performed using Metaseq and deeptools to search the global
distribution of binding profiles. FUNdue finally reports a functional annotation
including gene ontology and pathway analysis
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The low-quality sequences from the end of short reads were
firstly trimmed with a cutoff of 20 for the Phred quality score
(Q < 20), then the two adapter sequences shown above were
removed. This option (--pair-filter¼both) removes the entire
(pair-end sequenced) read pairs if at least one of the two sequences
became shorter than a certain length threshold.

CLIP-seq experiments often generate numerous PCR dupli-
cates after cDNA amplification. These duplicate reads need to be
identified and removed using Fastuniq [24], a tool for de novo
removal of duplicates in paired short reads and freely available at
https://sourceforge.net/projects/fastuniq/.

3.2 Reads Mapping The filtered and trimmed reads are then aligned against the refer-
ence genome using READemption [25]. READemption is a
pipeline for the computational analysis of RNA-Seq data. It was
developed initially for bacterial transcriptomic data, but now also
extended to analyze eukaryotic transcriptomes as well as a mixture
of both, i.e., dual RNA-Seq data [26]. The latest version can be
downloaded from https://pythonhosted.org/READemption/. It
requires segemehl [27] as the short read aligner, which can be
download separately from http://www.bioinf.uni-leipzig.de/Soft
ware/segemehl/. Segemehl effectively handles both mismatches
and short insertions and deletions. It is an ideal aligner for CLIP-
seq reads, which often contain the characteristic mutations intro-
duced by cross-linking procedures.

READemption covers most of the important mapping proce-
dures and is organized in a command-line interface with several
subcommands. These subcommands include read processing and
aligning, coverage calculation, gene expression quantification, dif-
ferential gene expression analysis as well as generating coverage files
for visualization.

The “create” subcommand in READemption can generate the
necessary folder structure. As required, transcriptome reads in
FASTA format need be stored in the folder input/reads, and the
genomes used as the reference should be in the folder input/refer-
ence_sequences. Also, the bacterial annotation files have to be placed
into input/annotations.

After the initial folder setup, the subcommand for running the
read alignment is

reademption align --realign, --processes 20 --segemehl_accuracy

95 --min_read_length 12 --progress [project_path]

Where [project_path] should be substituted by the path that
was used with the create subsommand. Of note, reads shorter than
12 nucleotides will be removed, as well as the reads that are mapped
to multiple locations. The remaining reads will then be aligned
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against the reference genome with a mapping accuracy of 95% using
segemehl. The reads mapping statistics, including the summary of
uniquely aligned reads and mapped reads, will be documented in
the file read_alignment_stats.csv. The read alignment and index files
will be generated in BAM and BAI format, respectively.

Reads coverage information representing the numbers of
mapped reads per nucleotide can be generated using the “cover-
age” subcommand. The command line is

reademption coverage --unique_only [project_path]

The uniquely aligned reads will be used to generate the cover-
age file and saved in wiggle format. READemption also provides
other useful options such as --coverage_style first_base_only, which
converts only the first base into coverage files. This option is
particularly useful to identify the transcript ends, which has served
the analysis of global RNase E processing sites in our recent TIER-
seq data [18]. The coverage plot can be visualized in a genome
browser, e.g., the Integrated Genome Browser [28].

3.3 Peak Calling RBP-binding sites in a transcript often accumulate many sequencing
reads, which form sharp peaks spanning a narrow region. Therefore,
peak calling serves to identify the precise RBP-binding sites, one of
the most critical steps in the CLIP-seq data analysis. A few issues may
influence the binding site detection. Firstly, most of the standard
CLIP-seq protocols do not include a negative background control,
which makes it hard to estimate the background noise and eliminate
false peaks. This is because reads falling into a given transcript can be
explained by two factors: transcript abundance and RBP preference,
thus a negative control is highly recommended. Secondly, reads may
align to incorrect transcripts due to sequencing errors and their
subsequent mapping. A robust peak-calling algorithm is crucial to
distinguish the specific RBP binding from nonspecific bindings
and/or background noise. Although a few computational
approaches have been developed, few are optimal because of prob-
lematic null hypotheses, e.g., Piranha [29], which considers sites
with small number of reads as noise without including a negative
control. A new peak-calling algorithm [16] has been developed to
address these issues. This approach first divides the consecutively
mapped reads into a few genomics blocks, and the blocks, which
fulfill overlapping requirements including the read coverage of each
block and the distance of the blocks, are iteratively assembled into
the candidate peak regions using blockbuster [30]. Importantly,
each candidate peak is tested for significant enrichment in the
cross-linked samples versus the non-cross-linked control samples
using DESeq2 [31]. This algorithm will be integrated in a peak-
calling tool PEAKachu, which is still under development, https://
github.com/tbischler/PEAKachu (T. Bischler, personal
communication).
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3.4 Cross-Linking-

Induced Mutations

Another important step is the identification of cross-linking
induced mutations, which can be used to pinpoint the direct
RNA–protein interaction sites at the single-nucleotide level. How-
ever, most of the available computational tools either ignore or
inadequately address this issue, because the mutations may be
confounded by single nucleotide polymorphisms (SNPs) and
sequencing errors. One exception is PIPE-CLIP [32]. This tool
can statistically identify the outstanding cross-linked mutations
across a background distribution. Briefly, each mutation site is
described by two parameters (ki, mi), where ki is the number of
mapped reads covering the considered location, and mi is the
number of specific mutations at location i. Then the mutation
rate is modeled in each position by the binomial distribution with
size ki and background rate, which is calculated by read coverage
with a summarization of matched length of all reads divided by
genome size (seeNote 2). The mutations will be considered signifi-
cant only if the calculated adjusted p-value is lower than a specified
threshold (e.g., adjusted p < 0.05). The source code of PIPE-
CLIP is freely available from https://github.com/QBRC/PIPE-
CLIP.

The command line for identifying cross-linking mutations is:

python pipeclip.py -i [inputfile] -o [output_prefix] -c 0 -l

12 -M 0.05 -C 0.05 -s [species]

The -c option is to specify the CLIP-seq type, -l option is to
specify minimummatch length, -M option is false discovery rate for
significant cross-linking mutation, -C option defines the false dis-
covery rate for the peak clusters.

For the paired-end reads, PIPE-CLIP cannot be directly used
for mutation calling. However, there are a few solutions. First, the
Python script ‘FindMutation.py’ can be used to identify substitu-
tions, deletions and insertions separately from the mapping BAM
files while allowing the user to choose the specific CLIP-seq type
(HITS-CLIP, PAR-CLIP). Second, to lower the bias caused by
background noise, the first read of the paired-reads can be extracted
using samtools [33] and the characteristic mutation sites need to
be present in both paired reads. Thirdly, the script ‘MutationFilter.
py’ can determine the significantly enriched mutations in each
library by using the extracted first paired mapping reads in BAM
format and consensus mutation sites in BED format as input.

3.5 Motif Discovery To investigate whether any sequence preference is present near the
protein binding regions, MEME [34], a de novo sequence motif
detection tool, can be used to discover consensus sequences among
peak sequences or the surrounding regions of enriched cross-
linking mutations. MEME can be accessed via a Web interface
(http://meme-suite.org/tools/meme).
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In addition to sequence-specific binding, some RBPs recognize
RNA partners by structural properties rather than the sequence per
se. CMfinder [35] is a tool that performed well to search for the
presence of structural motifs based on unaligned sequences with
long extraneous flanking regions. It relies on an expectation maxi-
mization algorithm using covariance models for motif description,
and a Bayesian framework for structure prediction combining fold-
ing energy and sequence covariation. CMfinder can be accessed
using webserver (http://wingless.cs.washington.edu/htbin-post/
unrestricted/CMfinderWeb/CMfinderInput.pl). It is also available
as a stand-alone perl script, which can be downloaded from http://
bio.cs.washington.edu/CMfinderWeb/CMfinderInput.pl.

The command to run CMfinder is

perl cmfinder.pl [infile]

The output motif files are named by using the input file name as
prefix (e.g., with the input file name input_file, the file input_file.
motif.* will be generated). These motif files are stored in Stock-
holm format, where the suffix indicates the number of stem-loops
in a motif. The motif file needs be reformatted to the unblocked
Stockholm format. This is done with the HMMER package
(http://hmmer.org/).

sreformat --pfam stockholm [alignfile] > [infile]

The formatted Stockholm file can be visualized using R2R
[36], a software that generates representations of structure-
informed RNA secondary alignments. The latest version is available
at http://breaker.research.yale.edu/R2R.

3.6 Meta Gene

Analysis

Meta gene analysis aims to analyze the global peak distribution with
respect to a specific location across all annotated genes. The peak
density can be calculated by counting the number of peaks along
the specified annotation features like start codons, stop codons,
sRNAs, and Rho-independent terminators. For example, a meta
gene analysis of Hfq peaks found that most peaks are located at 30 of
seed sequences in sRNAs, whereas in mRNAs they are found at the
50 of sRNA base-pairing regions [37].

A few computational tools are available for meta gene analysis.
Metaseq [38] enables integrating multiple genomic data formats
and allows for customized visualization. It is freely available at
https://github.com/daler/metaseq. Another tool is deepTools2
[39], which can jointly analyze multiple signals (bigWig) and
region files (BED), and visualize data in a composite image. It is
freely available at https://github.com/fidelram/deepTools and can
also be used with a galaxy-based platform (http://deeptools.ie-
freiburg.mpg.de/).
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3.7 Functional

Annotation

and Enrichment

Analysis

After the identification of RBP-binding sites, it is of interest to
understandwhether there is any enrichment of functions or pathways
among the RBP-bound genes. To carry out this analysis in bacteria,
we have developed a computational tool named FUNdue (L.L.,
unpublished). This tool is still under development (see Note 3) and
is available at https://github.com/LeiLiSysBio/FUNdue.

FUNdue covers multiple submodules for functional ontolo-
gies and pathways analysis including gene ontology and pathway
retrieval, functional assignment, statistics enrichment and visualiza-
tion. Briefly, the gene ontology and pathway information is auto-
matically retrieved from UniProt and KEGG databases. The
ontology of each gene is classified into three categories, the molec-
ular function, biological process and cellular component. Enrich-
ment analysis is performed to evaluate the significant terms
compared to the background using Fisher exact test and gene set
enrichment analysis [40]. The calculated p-values are subjected to
multiple-testing analysis using the Benjamini–Hochberg method.
The significant gene ontology terms will be visualized as bar plots.
Furthermore, the output files can be visualized by other tools such
as REVIGO [37], which offers an easy and interactive illustration
via web interface.

The following part demonstrates the steps for a pathway
enrichment analysis using FUNdue. To initial a project and gener-
ate the required folder structure, we use the “create” submodule.
The call to create the folder is:

traplfun create [project_path]

Where the [project_path] is the analysis folder specified by the
user. This will result in a folder structure with all the required
subfolders. FUNdue can automatically access and retrieve the path-
ways stored in the KEGG database [41], if the organism code is
given. The three-letter organism code for a species of choice can be
found on the KEGG website http://www.genome.jp/kegg/cata
log/org_list.html. For example, if you want to download all the
KEGG pathway information for S. Typhimurium SL1344 (organ-
ism code sey), the command is:

traplfun retrieve_pa -c sey [project_path]

After a list of interesting genes is created and stored in the
input/target_ids, we can use the subcommand ‘pathway_stat’ to
perform enrichment analysis with default fisher exact test. The
command is:

traplfun pathway_stat [project_path]

The significantly overrepresented pathways, per default with a
p-value lower than 0.05, are stored in the pathway folder output/
pathway/pathwy_enrichment in plain text format.
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These pathways can then be visualized using the subcommand
‘path_viz’. The command is:

traplfun path_viz -c [KEGG_organism_code] [project_path]

It creates histograms and a bar plot for the enriched pathway
summary. Besides the fisher exact test, the user can choose another
gene set enrichment analysis [42], which maps and renders the
changes in the relevant pathway graphs.

4 Notes

1. READemption can perform basic quality trimming and adapter
clipping; however cutadapt has many advanced functions such
as processing of paired-end sequencing reads, which is more
suitable for CLIP-seq because the size of RBP interaction
regions are comparable to whole cDNA fragments, and thus
more accurately defines the binding regions.

2. Installation of FUNdue requires a few python and R dependent
packages. This included Scipy, and also a few R packages includ-
ing KEGGREST, getopt, piano, optparse, gsge, and pathview.

3. PIPE-CLIP can identify all simple types of mutations including
substitutions, deletions and insertions. To avoid sequencing or
alignment errors, each different type of mutation needs to be
analyzed separately. UV-cross-linking mutations such as T to C
mutations should be enriched at specific sites and show high
frequency compared to other mutations. In addition, integrat-
ing the enrichedmutations with peaks information could further
pinpoint the cross-linking induced mutations.
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